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Abstract 49 

Establishing an effective empirical antifungal therapy requires conducting national 50 

surveillance studies. Herein, we report the clinical outcome and microbiological features of 51 

Iranian isolates of C. glabrata derived from patients suffering from candidemia. C. glabrata 52 

isolates were retrospectively collected from four major cities of Iran, identified by a 21-plex 53 

PCR, MALDI-TOF MS, and LSU rDNA sequencing, and genotyped by Amplified fragment 54 

length polymorphism (AFLP). Mutations in PDR1, ERG11, and hotspot1 of FKS1 and FKS2, 55 

were investigated, and antifungal susceptibility testing (AFST) was performed (CLSI M27-56 

A3/S4). Seventy isolates of C. glabrata were collected from 65 patients with median age of 57 

58. Fluconazole (29.23%) was the most widely used and least effective antifungal agent. The 58 

overall crude mortality rate was 35.4%. Only one strain was resistant to fluconazole and 59 

57.7% and 37.5% of isolates were non-wild type (non-WT) against caspofungin and 60 

voriconazole, respectively. All of isolates showed WT phenotype for AMB, posaconazole, 61 

and itraconazole. HS1 of FKS1 and FKS2 did not harbor any mutations, while numerous 62 

missense mutations were observed in PDR1 and ERG11. AFLP clustered our isolates into 63 

nine genotypes, among them genotypes 1 and 2 were significantly associated with a higher 64 

mortality rate (P=0.034 and P=0.022, α<0.05). Moreover, 83.3% of patients infected with 65 

strains harboring a single new mutation of T745A in PDR1 died despite of treatment with 66 

fluconazole or caspofungin. Overall, Iranian isolates of C. glabrata were susceptible to major 67 

antifungal drugs. Application of genotyping techniques and sequencing of specific genes, 68 

PDR1, might have prognostic implications. 69 

 70 

Introduction 71 
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Candida glabrata is considered as the second most common cause of candidemia in the USA 72 

and some European countries (1–4) and the third in Spain (5). Patients infected with C. 73 

glabrata, compared to those infected with C. albicans, require higher expenses of health care 74 

and a longer stay in the hospitals (6). Emergence of strains resistant to fluconazole (7), 75 

echinocandins and/or other antifungals (multidrug resistant) (8, 9) along with a limited 76 

number of antifungal drugs created a therapeutic challenge. 77 

Although gain of function mutations in transactivating transcription factor of CgPDR1 have 78 

been considered as the main cause of azole resistance in C. glabrata (10), some mutations in 79 

ERG11 are linked to MDR strains highly resistant to FLC, VRC, and AMB (11). Resistance 80 

to echniocandins is mainly mediated by mutations in the hotspot1 of the FKS1 and FKS2 (12), 81 

which are considered to be independent prediction factors for therapeutic failures of 82 

echinocandins (13). 83 

Although, C. glabrata is recognized as an asexual Candida species, genomic studies showed a 84 

high genetic variability for clinical isolates of C. glabrata obtained from various countries 85 

(14). Moreover, it has been known that some genotypes are attributable to a higher mortality 86 

rate (15) and even it might be hypothesized that some genotypes are more virulent and 87 

resistant (15). Hence, utilization of genotyping techniques such as multi locus sequence 88 

typing (MLST) (15), microsatellite typing (9), pulsed field gel electrophoresis (16), amplified 89 

fragment length polymorphism (AFLP) analysis (17), and polymorphic locus sequence typing 90 

(18) are relevant for infection control measures. Although MLST has been extensively used 91 

for genotyping of clinical isolates of C. glabrata, AFLP showed a higher resolution (19) and it 92 

is also a preferred typing method for C. auris (20) and Aspergillus terreus (21). 93 

Determination of antifungal susceptibility pattern on a national level is a prerequisite to 94 

understand the evolving susceptibility profile of C. glabrata. Lack of systematic and 95 

nationwide information on microbiological and clinical data of Iranian isolates of C. glabrata 96 
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recovered from blood samples prompted us to conduct the present study. Isolates of C. 97 

glabrata were retrospectively collected from four major clinical cities of Iran from 2015-98 

2018. Antifungal susceptibility testing was performed according to CLSI M27-A3/S4, 99 

characterization of genotypes was carried out by AFLP and presence of mutations in genes 100 

conferring resistance to azoles (PDR1 and ERG11) and echinocandins (HS1 of FKS1and 101 

FKS2) were explored. Moreover, important clinical data were mined from the history of 102 

infected patients and presented. 103 

 104 

Results  105 

Clinical outcomes 106 

Clinical data used in this study are listed in the Supplementary table 2 (Excel file). In total, 70 107 

isolates of C. glabrata were recovered from 65 patients with the median age of 58 years, 108 

among them 47.7 (n=31) were female and 52.3% (n=34) were male. The majority of the 109 

isolates (86.1%; n=56) were recovered from blood, followed by central venous catheter and 110 

abdominal fluids each 3.08% (n=2), and abdominal wound, dialysis fluid, cerebrospinal fluid 111 

CSF, and DL and TL each 1.54% (n=1) (Supplementary table 2). ICU, CCU, NICU, and 112 

PICU accommodated the majority of the patients (47.69%), followed by other hospital units, 113 

including surgery (18.46%), emergency (15.38%), internal medicine (12.31%,), children 114 

(3.08%), infectious diseases (1.54%) and general men (1.54%). Regarding underlying 115 

conditions, other infections and tumors were observed in 47.7% of patients, followed by 116 

trauma and surgery (20.00%), metabolic disorder (9.23%), blood-associated disease (7.69%), 117 

autoimmune disease and liver and kidney dysfunctions each 4.62%, gastrointestinal bleeding 118 

(GIB) (3.08%), and poisoning (1.54%). The majority of patients were treated with fluconazole 119 

(29.23%), followed by caspofungin (18.46%), AMB (10.77%), voriconazole (3.08%), and 120 
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ointment clotrimazole (1.54%). Patients treated with caspofungin showed the highest rate of 121 

survival (83.3%), followed by those treated with AMB (71.43%) and fluconazole (52.63%). 122 

Twenty four (36.92%) patients did not receive any treatment and nine of them (37.50%) died 123 

and 62.50% (n=15) survived. The overall crude mortality rate of patients infected with C. 124 

glabrata was 35.4% (n= 23).  125 

Screening of mutations in PDR1, ERG11, and HS1 of FKS1 and FKS2 126 

Sequencing of PDR1 showed that 54.92% (n=39) isolates contained non-synonymous 127 

mutations (Table 1, Supplementary table 3 and 4, and Supplementary Figure 3), 45.08% 128 

(n=39) isolates were wild-type, and 64.78% (n=39) harbored silent mutations (Supplementary 129 

table 4). Twenty eight percent of mutations were located in the intervening region between the 130 

binding and middle homology domains and found in isolates that showed the highest MIC 131 

values for fluconazole (≥32 and 64). As for association of occurrence of mutation in PDR1 132 

and voriconazole MIC values, 45.1% of the PDR1 wild types and 30.7% of non-WT PDR1 133 

isolates (carrying various non-synonymous mutations) had the MIC values higher than 134 

epidemiological cut-off value (MIC≥0.5) (Table 5). Among strains with non-synonymous 135 

mutations in PDR1, K67N (MIC=2 µg/ml), G128E, G493A (MIC=0.5 µg/ml), K430M, 136 

T745A (MIC=0.5 µg/ml), E555K (MIC=4 µg/ml), and T745+C930R (MIC=0.5 µg/ml) were 137 

exclusively occurred in strains with voriconazole MIC>ECV (Table 5). Regarding ERG11, 138 

36.6% (n=26) of isolates showed non-synonymous mutations, 63.38% (n=26) were wild-type, 139 

and 81.69% (n=58) harbored silent mutations (Table 2, Supplementary table 3 and 4, and 140 

Supplementary Figure 3). Almost 22.53% (n=16) of isolates simultaneously contained 141 

mutations in both genes of PDR1 and ERG11 (Supplementary Table 4). Hotspot1 of both 142 

FKS1 and FKS2 were devoid of any mutations. Isolates harboring simultaneous mutations in 143 

both PDR1 and ERG11 and those with mutation in either genes did not show a significantly 144 

higher MIC values compared to those of wild-types. Surprisingly, five out of six patients 145 
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infected with strains containing a single mutation of T745A in PDR1 died, despite of 146 

treatment with fluconazole or caspofungin or combination of both. These strains were found 147 

in two cities of Mashhad (n=5) and Shiraz (n=1) and using AFLP they were clustered into five 148 

distinguished genotypes (two strains from Mashhad shared the same genotype).  149 

Genotyping of isolates using AFLP 150 

AFLP divided our isolates into 9 distinct clusters (G1-G9) and genotype 2 was comprised of 151 

three sub-genotypes of G2A, G2B, and G2C (Figure 1). Two isolates, collected from Tehran 152 

and Isfahan, showed a bizarre banding pattern compared to the rest of C. glabrata isolates and 153 

they clustered with C. nivariensis and C. uthaithanina. Subsequently, subjecting respective 154 

DNA samples to the 21-plex PCR revealed two bands representing C. glabrata and C. 155 

parapsilosis indicating that DNA samples were mixed of both aforementioned species. As a 156 

result, the DNA samples obtained from these two isolates were excluded from downstream 157 

genotyping analysis. There was no significant difference between resistance profile and 158 

genotype clusters (Table 4). Associations of various genotypes with resistance profile to 159 

fluconazole are summarized in Table 4. Although, through Chi-squared test (two-tailed) 160 

clinical outcome was only significantly associated with G3 (P=0.025), logistic regression and 161 

path analysis showed that G1 (P=0.034) and G2 (P=0.022) were significantly associated with 162 

a higher rate of mortality (α<0.05), while G3 was significantly associated with survival 163 

(P=0.001, α<0.05) (See supplementary files, statistical analysis section). Moreover, through 164 

Chi-squared test (two-tailed) there was no significant association between clinical outcome 165 

and VRZ resistance profile (P=0.555) and clinical outcome and clinical failure (P=0.504). 166 

Additionally, multivariate logistic regression analysis did not show significant association 167 

between clinical outcome and hospitalization duration (P=0.291) (See supplementary files, 168 

statistical analysis section). 169 

Antifungal susceptibility pattern  170 
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All of the MIC values obtained in this study are summarized in Table 3 and Supplementary 171 

table 3. Resistance to fluconazole (MIC≥64) was only noted in one isolate (1.4%) and the rest 172 

were susceptible dose-dependent (SDD), while 36.43% (n=28) of the isolates showed the 173 

MIC values higher than ECV for voriconazole (MIC≥0.5 µg/ml), and all of isolates showed  174 

the WT phenotype for posaconazole (MIC≥2 µg/ml), and itraconazole (MIC≥4 µg/ml). No 175 

cross-resistance between azole drugs was observed. As for caspofungin, 57.74% of isolates 176 

(n=41) showed the MICs above the ECV (≥0.5 µg/ml), while for AMB none of isolates 177 

showed MIC>ECV (AMB ECV>2 µg/ml) (31). Although, resistance to echinocandins is 178 

noted when resistance is observed for at least two antifungal agents in this class (12, 32), 179 

caspofungin was the only echinocandin agent that was available in our study. Moreover, due 180 

to the interlaboratory variation observed for caspofungin (33) and as a surrogate the MIC 181 

values of caspofungin were combined with the sequence data of HS1 of FKS1 and FKS2. 182 

Almost 24% (n=17) of isolates simultaneously had the MIC values higher than ECV for both 183 

caspofungin and voriconazole (MIC≥0.5 µg/ml), among which 35.29% (n=6) had the MIC 184 

values of ≥ 1µg/ml and ≥0.5 µg/ml for voriconazole and caspofungin, respectively. 185 

Fluconazole showed the highest geometric mean value (10.31), followed by amphotericin B 186 

(0.57), itraconazole (0.51), caspofungin (0.41), posaconazole (0.41), and voriconazole (0.32). 187 

Discussion 188 

The steady increase in the incidence of candidemia due to C. glabrata along with a 189 

concerning development of resistance to azoles, echinocandins, and even emergence of strains 190 

with MDR traits have highlighted the importance of studying antifungal susceptibility, the 191 

involved subcellular mechanisms of resistance, and genotyping of clinical isolates of C. 192 

glabrata (9, 12). Previously, studies conducted in China (9, 34), South Korea (15), India (35), 193 

and USA (12) had investigated the aforementioned aspects of clinical isolates of C. glabrata, 194 

and showed a variability in rate of resistance to azoles and echinocandins in those countries. 195 
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As, these information in a nationwide scale is lacking for Iranian isolates of C. glabrata, we 196 

conducted a multicenter study to investigate the clinical and microbiological features of this 197 

species.  198 

In our study, no difference was observed in occurrence of candidemia due to C. glabrata 199 

between males and females. Consistent with the other studies infections due to C. glabrata 200 

were mainly observed in elderlies (6, 36), with the median age of 58 years. Moreover, 201 

underlying conditions observed for our patients, namely extensive use of broad-spectrum 202 

antibiotics, cancer, other infections, and surgery are recognized risk factors for development 203 

of candidemia (6, 36). Although clinical guidelines consider echinocandins as the frontline 204 

therapy for C. glabrata (37), in our study caspofungin ranked as the second treatment option 205 

and showed the highest rate of survival compared to those treated with fluconazole. Lower 206 

utilization of echniocandins compared to azoles in developing countries might reflect the 207 

higher expenses associated with these drugs (35). Unlike other studies with a reported 208 

mortality rate of 58%-61% (38), in our study approximately 35% of our patients died, similar 209 

to what is reported from USA (6).  210 

As no mutations were observed in HS1 of FKS1 and FKS2, none of our isolates were 211 

categorized as echinocandin resistant. Due to unreliability of the MIC values of caspofungin 212 

(33) and superiority of presence of mutations in HS1 of FKS1 and FKS2 (39) resistance to 213 

echniocandins were inferred only based on the presence of mutation in HS1 of the 214 

aforementioned genes. This is in line with our findings, where the vast majority of isolates 215 

(57.74%) had the MIC>ECV (0.5µg/ml), while there were no mutations in the HS1 of FKS1 216 

and FKS2. Contrary to USA with a rate of echinocandin resistance up to 13% (12), the lack of 217 

echinocandin resistance in our study is similar toother Asian countries, including South Korea 218 

(0%), India (0%), China (1.9%), Turkey (2%) (15, 34, 35, 40), European and South American 219 

countries (38, 41-44). Likely, this variation in rate of resistance to echinocandins reflects the 220 
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variation in therapeutic regimen implemented in a specific region/country (35), and the 221 

genetic difference between isolates of C. glabrata (15).  222 

A low level of resistance was observed for fluconazole (one isolate, 1.4%), and the rest of 223 

isolates was categorized as the SDD phenotype. This rate of resistance to fluconazole is 224 

similar to what is observed in the other Asian and South American countries where the 225 

incidence of fluconazole resistance varies from 0%-8.9% (15, 34, 35, 40, 41). As strains 226 

harboring mutations in PDR1 or ERG11 compared to those of wild-types did not exhibit 227 

higher MIC values (Tables 2 and 3), it could be inferred that those mutations were not 228 

engaged in resistance. The fluconazole resistant isolate carried a previously described 229 

mutation (P76S, P145T, D243N) (34) that was also found in isolates with the SDD phenotype 230 

(Table 2). Although, in some other Candida species, such as C. albicans (45) the fluconazole 231 

and vroiconazole resistance are governed by the same mechanism, none of our strains showed 232 

concurrent cross-resistance/non-WT phenotype for FLZ and VRZ. Moreover, the majority of 233 

non-synonymous mutations occurring in PDR1 (n=26; 66.6%) had the VRZ MIC <ECV and 234 

among those with the MIC >ECV, only one third were exclusively found in VRZ non-WT 235 

strains (K67N, G128E+G493A, K430M+T745A, E555K, and T745+C930R). Besides, PDR1 236 

WT strains compared to those of non-WTs had a higher proportion of non-WT phenotype for 237 

VRZ (45.1% WT versus  30.7% non-WT) (Table 5). Collectively, these observations point to 238 

the fact that in C. glabrata, resistance to fluconazole and voriconazole might not be controlled 239 

by the same mechanism. As for ERG11, all non-synonymous mutations occurred in 240 

fluconazole SDD strains. X-ray crystallography studies on ERG11 of S. cerevisiae (46) and 241 

homology modelling in C. glabrata (47) showed that missense mutations in the residues of 242 

132, 140, 143, 464 and 146, 243, and 246, respectively, are linked to azole resistance. On the 243 

contrary, in our study none of the isolates with substitution in the neighborhood of those 244 

residues (196, 425, 430, 456-458) showed resistance to fluconazole. Moreover, unlike S. 245 
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cerevisiae (46), occurrence of mutation in the residue of 315 (G315D) of a clinical strain of C. 246 

glabrata caused multidrug resistance to fluconazole (> 256µg/ml), voriconazole (> 247 

256µg/ml), and AMB (> 32µg/ml) (11). None of isolates showed the MIC values higher than 248 

ECV (MIC> 2µg/ml) for AMB. Low level and lack of resistance to azoles and 249 

AMB/echniocandins in this study might be explained by the fact that none of our patients 250 

experienced previous and prolonged exposure with these antifungals (48, 49). 251 

Although, mutations in MSH2 gene (DNA mismatch repair pathway) correspond to 252 

hypermutable phenotypes of C. glabrata that can facilitate development of azole R and MDR 253 

strains (8), studies from India (35), France (50) and China (34) found that mutations in this 254 

gene are more associated with rare and specific genotypes. Therefore, we did not include this 255 

gene in our study. 256 

Observation of hyper-variation in virulence patterns for each strains of C. glabrata (51) along 257 

with the association of certain genotypes with a higher rate of mortality (15), revealed the 258 

importance of genotyping techniques in clinical settings. In line with these findings, in our 259 

study two genotypes, G1 and G2, showed a significant association with a higher rate of 260 

mortality (α<0.05, P=0.034 and P=0.022), while G3 was significantly associated with 261 

survival (α<0.05, and P=0.001). Additionally, it has been shown that mutations in PDR1 have 262 

implications in virulence and strains carrying certain mutations showed reduced adherence to 263 

macrophages and increased adhesion to epithelial cells (10). Interestingly, we noticed that five 264 

out of six patients infected with strains carrying a single mutation of T745A in PDR1 (not in 265 

combination with the other mutations in PDR1) died despite of treatment with either 266 

fluconazole or caspofungin or a combination of both. Five of those isolates belonging to four 267 

genotypes (two strains shared the same genotype) were found in the same city (Mashhad) and 268 

the same hospital for which 80% of infected patients died (n=4). As for the other isolate 269 

belonging to a different genotype was found in Shiraz and the infected patient died. Although, 270 
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drawing this conclusion based on a small number of strains is not conclusive, due to the 271 

pleiotropic functions of PDR1, this specific mutation (T745A) might deserves further in-vivo 272 

studies. Surprisingly, in our study each genotype of C. glabrata contained isolates recovered 273 

from patients hospitalized in different cities. Admitting the fact that AFLP might not have the 274 

genotyping resolution of whole genome sequencing platforms, this observation might be an 275 

indicative of nosocomial transmission of C. glabrata isolates. Although rarely reported, some 276 

studies have shown the nosocomial transmission of C. glabrata isolates in clinical settings 277 

(18, 52).  278 

Materials and methods 279 

Collection of isolates and ethical approval 280 

Isolates of C. glabrata were retrospectively collected from Tehran, Isfahan, Shiraz, and 281 

Mashhad from 2015-2018 (Supplementary Figure 1). The procedure of study in each center 282 

was evaluated by regional ethical committee members and accordingly they were provided 283 

with ethical codes (IR.SUMS.REC.1397.365, IR MUMS fm REC.1397.268, IR. TUMS. 284 

.SPH.REC.1396.4195). Prior to studying the isolates and analyzing the clinical data, each 285 

patient and the isolates derived from them were designated with specific codes to prevent 286 

exposing their personal data. 287 

Identification 288 

Preliminary isolates were identified by a 21-plex PCR (22). Isolates were serially coded from 289 

1-70. They were re-identified by MALDI-TOF MS (MALDI Biotyper; Bruker Daltonik 290 

GmbH, Bremen, Germany) (23) and sequencing of the D1/D2 domains of the large subunit of 291 

rDNA (LSU rDNA) sequencing) (24). 292 

DNA extraction 293 
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DNA samples were extracted with the CTAB method (100 mM Tris-HCl pH 8,4; 1,4 M NaCl; 294 

25 mM EDTA pH 8.0; 2% CTAB) (25). The quality of DNA samples were assessed by 295 

NanoDrop (Thermo Fisher Scientific, Waltham, Massachusetts, USA) and running 5µl of 296 

DNA sampels on 0.7% agarose gel, the quality and their quantity was evaluated by QuBit 297 

dsDNA BR Assay Kit (Thermo Fisher Scientific corporation, Waltham, Massachusetts, 298 

USA). 299 

Primer design, PCR, and sequencing for FKS1, FKS2, PDR1, and ERG11  300 

DNA sequences of HS1 of FKS1 and FKS2, and PDR1, and ERG11 were determined and 301 

screened for presence of mutations. Fourteen primers were used to sequence PDR1 302 

comprising two external primers and 12 internal primers and eight primers for ERG11, 303 

including two external and 6 internal primers (Supplementary Table 1 and Figure 2). Primers 304 

were synthesized by the IDT Company (Integrated DNA Technology, Leuven, Belgium). 305 

PCR reactions for FKS1, FKS2, PDR1, and ERG11 were prepared in a volume of 50µl as the 306 

following, 5µl 10X buffer (10X NH4, No MgCl2), 2mM MgCl2 , 0.2mM dNTP mix (dNTP 307 

mix, 100Mm, Biolab), 5 picomol of primers (FKS1-F, FKS1R, FKS2F, FKS2R, PDR1Fex, 308 

PDR1Rex, ERG11Fex, and ERG11Rex), 2.5 units of Taq polymerase enzyme (Bio Taq DNA 309 

Polymerase, Biolab), and using MiliQ water to adjust the volume to 50µl.  310 

All PCR reactions were set at the same annealing temperature but with variable incubation 311 

time of the extension phase. PCR programs contained the following steps, 95 
º
C for 5 min, 312 

followed by 95 
º
C for 30 sec, 58 

º
C for 30 sec, 72 

º
C for 30 seconds (FKS1), 1 min (FKS2), 2 313 

min for ERG11, and 3 min for PDR1, followed by 72 
º
C for 8 min. PCR products were run on 314 

2% agarose gel. 315 

Sequencing and analysis of sequences 316 
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Primers presented in table 1 were used in bidirectional dideoxy chain terminated Sanger 317 

sequencing. Contigs were assembled and edited by SeqMan software (DNASTAR, Madison, 318 

USA) and obtained sequences were aligned by MEGA software V.7.0 (Temple University, 319 

Philadelphia). Following sequences of FJ550269.1 (10) and XM_445876 (26) were used as 320 

the WT references for PDR1 and ERG11 sequences, respectively. 321 

Genotyping using amplified fragment length polymorphism (AFLP)  322 

AFLP as suggested by Alessia er al. (27) was employed to evaluate the genotypic patterns of 323 

our isolates of C. glabrata. AFLP data were analyzed by Bionumerics software V7.6 (Applied 324 

Math Inc, Austin, Texas, USA). The reference and type strains of C. glabrata (CBS 138 and 325 

CBS 2175) and the other closely-related species, including, C. nivariensis (CBS 9983-85 and 326 

CBS 10161), C. bracarensis (CBS 10154), C. uthaithanina (CBS 10932), C. kungkrabaensis 327 

(CBS 10927), N. delphensis (CBS 2170), N. bacillisporous (CBS 7720) and a clinical isolate 328 

of C. bracarensis (generously provided by professor W. Liao, Shanghai) were included in the 329 

AFLP experiment. 330 

Antifungal susceptibility testing  331 

Minimum inhibitory concentration values of antifungal drugs were determined by broth 332 

microdilution procedure according to CLSI-M27/A3 (28). The following antifungal drugs 333 

were included, fluconazole (Pfizer, New York, USA), voriconazole (Pfizer, New York, USA), 334 

itraconazole (Santa Cruz Biotech, Dallas, USA), posaconazole (MSD, Kenilworth, USA), 335 

caspofungin (Merck & Co., Inc.), and amphotericin B (Sigma Chemical Corporation, St. 336 

Louis, MO). For quality control purposes, C. parapsilosis (CBS 604) and C. krusei (CBS 337 

5147) were used. Species-specific breakpoints were adopted from CLSI-M27/S4 (29). 338 

Minimum inhibitory concentration was read visually after 24 hours and noted as the lowest 339 

concentration of fluconazole (FLZ) and caspofungin (CAS) resulting in at least 50% reduction 340 
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of growth compared to the control. Resistance to FLZ and CAS was noted when the MIC 341 

values were ≥ 64 µg/ml and ≥ 0.5 µg/ml, respectively. The MIC values of other azole drugs 342 

including vorconazole (VRC) (≥ 1 µg/ml), posaconazole (PSC) (≥ 4 µg/ml), and itraconazole 343 

(ITC) (≥ 4 µg/ml) were interpreted according to epidemiological cut-off values (29, 30). MIC 344 

values of AMB were noted at the lowest concentration of the drug that showed 100% 345 

reduction compared to an AMB-free control strain, and MIC values > 2.0 were considered as 346 

potential resistant isolates (29, 30, and 31). 347 

Deposition of strains in the culture collection of Westerdijk Institute and accessibility of 348 

sequences  349 

All the isolates of C. glabrata studied in this project were deposited in the culture collection 350 

Westerdijk Fungal Biodiversity Institute and they were designated with the following CBS 351 

numbers: CBS 15665-15720, CBS 15722-15733, and CBS 15744. Sequences obtained for 352 

PDR1, ERG11, and HS1 of FKS1 and FKS2 are attached in the supplementary text files of 6-353 

9. 354 

Statistical analysis 355 

Logistic regression and path analysis was performed to evaluate the statistical significance 356 

and association between genotypes and death or survival. As multivariate logistic regression 357 

analysis does not consider the indirect influence of independent variables on dependent ones, 358 

therefore, path analysis was used to overcome this problem. Using path analysis the 359 

association of mortality and survival were individually assessed with genotypes 1-3. 360 

Moreover, Chi-squared test (two-tailed) was used to find the association between the clinical 361 

outcome and genotypes, voriconazole susceptibility profile (susceptible or resistance), 362 

hospitalization duration, and clinical failure for all patients. Values <0.05 were considered as 363 
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statistically significant. All statistical analysis were calculated by SPSS software v.24 364 

(Windows, Chicago, IL, USA) (See supplementary files, statistical analysis section).  365 
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Table legends 586 

Table 1. Frequency of resistance to fluconazole in wild type and mutated strains for PDR1 587 

Table 2. Frequency of resistance to fluconazole in wild type and mutated strains for ERG11.  588 

Table 3. Antifungal susceptibility data derived from C. glabrata isolates in this study 589 

Table 4. MIC distribution of fluconazole among genotypes of C. glabrata. 590 

Table 5. Frequency of isolates with wild type and mutated PDR1 profile along with their MIC values for 591 
voriconazole 592 

 593 

Figure legends 594 

Figure 1.AFLP genotyping for studied strains of C. glabrata. Our isolates using AFLP clustered into nine 595 

genotypes and each genotypes was distinctively color-coded. 596 

 597 
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Table 1. Frequency of resistance to fluconazole in wild type and mutated strains for PDR1.  

* Only one of the isolates with this mutation (P76S, P145T, D243N) was resistant to fluconazole and the rest of isolates were 

100% SDD to this drug. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Polymorphism  in PDR1 

# of isolates along with their MIC values (µg/ml)  

 

Total 

≤0.5 1 2 4 8 16 32 64 128 ≥256 

WT    5 15 10 1    32 

K67N     1      1 

P68S, P135T, D235N      1 1    2 

P76S, P145T, D243N*     3 1 1 1
*   6 

P117S    1       1 

G128E      1     1 

G128E, G493A     1      1 

N162S      1     1 

N162S, F944S     1      1 

G189V     1      1 

Y285N, T286A, K430M, 

T745A 

    1      1 

K430M    2       2 

K430M, E441K      1     1 

K430M, L454P      1     1 

K430M, T745A      1     1 

K430M, G493A, T745A      1     1 

E555K      1     1 

G574S     1      1 

T745A   1  3 2     6 

T745A, C930R      1     1 

A828T       1     

C930R    2  3 1    6 

A1004C     1      1 

 on A
pril 3, 2019 by guest

http://aac.asm
.org/

D
ow

nloaded from
 

http://aac.asm.org/


 

Table 2. Frequency of resistance to fluconazole in wild type and mutated strains for ERG11.  

* Only one of the ERG11 wild-type isolates was fluconazole resistance and the rest of wild-type and ERG11 mutated isolates 

were 100% SDD to this drug. 

 

 

Polymorphism  in ERG11 

# of isolates along with their MIC values (µg/ml)  

 

Total 

≤0.5 1 2 4 8 16 32 64 128 ≥256 

WT   1 7 18 13 5 1
*   45 

D196N     1       

N368T    2 3 7     12 

N368T, H430P     1 1     2 

N368T, K456R, G457C, 

V458F 

     1     1 

N425I    1       1 

H430P    1 4 2     7 

K456R,  G457C, V458F     1      1 

 on A
pril 3, 2019 by guest

http://aac.asm
.org/

D
ow

nloaded from
 

http://aac.asm.org/


Table 3. Antifungal susceptibility data derived from C. glabrata isolates in this study 

 

 

 

Antifungal 

drugs 

 

MIC Values 

 

Range 

 

GM 

mean ≤0.016 0.032 0.064 0.125 0.25 0.5 1 2 4 8 16 32 ≥64 

FLC        1 11 28 24 5 1 2-64 10.11 

VRC   2 20 21 16 6 4 1  1   0.064-16 0.32 

PSC  1 1 1 15 27 26       0.032-1 0.41 

ITC   2 3 21 34 10 1      0.064-2 0.51 

CASP    8 22 22 19       0.125-1 0.41 

AMB     3 52 15 1      0.25-2 0.57 
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Table 4. MIC distribution of fluconazole among genotypes of C. glabrata. 

* Only one of the isolates within genotype 1 (G1) was resistant to fluconazole and the rest of isolates were SDD to this drug. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Genotypes 

# of isolates along with their MIC values (µg/ml)  

 

Total 

≤0.5 1 2 4 8 16 32 64 128 ≥256 

G1
*
    2 8 4 2 1

*   17 

G2 (A, B, and C)    4 9 12 1    26 

G3    2 4 3 1    10 

G4    1  2     3 

G5     1 1     2 

G6   1  3      4 

G7    1 1 1     3 

G8     1      1 

G9     1      1 
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Table 5. Frequency of isolates with wild type and mutated PDR1 profile along with their MIC values for voriconazole 

 
 

Polymorphism  in PDR1 

 
 

<ECV% 

 
 

>ECV% 

# of isolates along with their MIC values (µg/ml)  
 

Total 
≤0.0625 0.125 0.25 0.5 1 2 4 8 16 ≥32 

WT 54.9% 45.1% 1 7 9 6 4 3   1  31 
K67N 0.00% 100%      1     1 

P68S, P135T, D235N 100% 0.00%  2         2 

P76S, P145T, D243N 67.67% 33.33%  2 2 2       6 
P117S 100% 0.00%  1         1 
G128E 100% 0.00%   1        1 

G128E, G493A 0.00% 100%    1       1 
N162S 100% 0.00%   1        1 

N162S, F944S 100% 0.00%  1         1 
G189V 100% 0.00%   1        1 

Y285N, T286A, K430M, 
T745A 

100% 0.00%   1        1 

K430M 100% 0.00%  1 1        2 
K430M, E441K 100% 0.00%   1        1 
K430M, L454P 100% 0.00%  1         1 
K430M, T745A 0.00% 100%    1       1 

K430M, G493A, T745A 100% 0.00%  1         1 
E555K 0.00% 100%       1    1 
G574S 100% 0.00%   1        1 

T745A 50% 50% 1 1 1 2 1      6 
T745A, C930R 0.00% 100%    1       1 

A828T 0.00% 100%    1       1 
C930R 67.67% 33.33%  2 2 1 1      6 

A1004C 100% 0.00%   1        1 
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